
Math 53: Multivariable Calculus Sections 201, 204

Worksheet answers for 2021-12-03

If you would like clari�cation on any problems, feel free to ask me in person. (Do let me know if you catch any mistakes!)

Answers to warm-up questions
Question 1. �is is false. A normal vector to the surface z = f (x , y) at the point where x = a and y = b is given by
⟨ fx(a, b), fy(a, b),−1⟩.
�e gradient ∇ f (a, b) = ⟨ fx(a, b), fy(a, b)⟩ gives a normal vector to the level set k = f (x , y) in the plane R2 though,

where k is the constant f (a, b).

Question 2. �is is true. You can see it by di�erentiating the equation r ⋅ r = 1 with respect to t.

Answers to computations
I will mostly just provide outlines of the solutions. If you want more details or catch any mistakes, just let me know.

Problem 1. �e angle between two planes is the angle between their normal vectors, but note that you should give an angle
between 0 and π/2 for your �nal answer. So if the angle you computed between the normal vectors is obtuse, take π minus
that angle instead.

Problem 2. �e point (−16, 4) corresponds to t = 2. We have dx/dt = 0 at t = 2, whichmeans that our tangent line is vertical:
x = −16 is its Cartesian equation.

Problem 3. At (0, 0), we have f (0, 0) = 0, fx(0, 0) = 1, fy(0, 0) = 1. So the linear approximation is
L(x , y) = 0 + 1(x − 0) + 1(y − 0) = x + y.

Problem 4. Let’s try and �nd a potential function f in the standard systematic way:

fx(x , y, z) =
1
x2

+ y

so f (x , y, z) = − 1
x + xy + g(y, z) for some function g of y and z. Di�erentiating this with respect to y and comparing to F

yields

fy(x , y, z) = x + gy(y, z) = x +
1
y
+ z2

hence gy(y, z) = 1
y +z

2, meaning g(y, z) = ln ∣y∣+ yz2+h(z)where h is a function depending only on z. Finally, di�erentiating
f (x , y, z) = − 1

x + xy + ln ∣y∣ + yz2 + h(z) with respect to z and comparing to F gives
fz(x , y, z) = 2yz + h′(z) = 2yz

so we need h′(z) = 0. So let’s just take h(z) = 0.
We didn’t run into any impossible situations when doing this, so our vector �eld F is conservative and this function

f (x , y, z) = − 1
x + xy + ln ∣y∣ + yz2 is a potential function.

Problem 5. Find the points where ∇ f (x , y) = ⟨0, 0⟩ in the interior region x4 + y4 < 1, and then use Lagrange multipliers
to deal with the boundary x4 + y4 = 1. You should �nd (0, 0) in the inside, and the candidates along the boundary are
(−1, 0), (1, 0), (0,−1), (0, 1), (−2−1/4,−2−1/4), (2−1/4, 2−1/4). �e max value is 21/4, attained at the last point.

Problem 6. If you remember the polar arc length formula, just use that. If not, then no problem—any polar curve can just be
converted to a parametric curve; for instance this one is

x = (θ2 − 1) cos θ , y = (θ2 − 1) sin θ .
�en you can evaluate ∫C ds in the usual way.

Problem 7. Same deal as the previous problem. In fact I strongly suggest you don’t bother remembering the formula for
dy/dx in polar; just convert your polar curve to a parametric curve and use the formula for dy/dx for parametric curves.
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Problem 8. You’ll need to do this by direct parametrization rather than any fancy theorems.

Problem 9. �e integrand is a conservative vector �eld; it’s the gradient of the product f g. Check this! Hence the integral is
zero. �is argument works regardless of whether f , g are de�ned on all of R3.
If you computed∇×( f∇g + g∇ f ) = 0, that would show the the integrand is conservative on any simply connected region,

so it would work for the �rst half of the problem but not the second.

Problem 10. Direct computation shows that it’s a critical point. If you try to use the second derivative test, you’ll get D = 0,
so it’s inconclusive. But f (0, 0) = 1 and clearly f (x , y) ≤ 1 for all (x , y), so (0, 0) is a local max (indeed, it is a global max).

Problem 11. Rewrite the plane as z = 1
3(1− x − 2y) and parametrize using x , y. �e region of integration in the xy-plane will

be the disk D given by x2 + y2 ≤ 3. At that point you can convert to polar (or use geometry, noting the area of the disk is 3π).
Problem 12. We are told

(a + b) ⋅ (a − b) = 0
which expands to

a ⋅ a − a ⋅ b + b ⋅ a − b ⋅ b = 0.
But a ⋅ b = b ⋅ a and a ⋅ a = ∣a∣2, so this formula just says

∣a∣2 = ∣b∣2.
Since the lengths are obviously nonnegative, this means we must have ∣a∣ = ∣b∣.
Problem 13. Switch the order of integration.

Problem 14. It’s zero, because the �rst term doesn’t involve z, the second doesn’t involve y, and the third doesn’t involve x.

Problem 15. Let E be the solid ellipsoid. If we apply the change of variables x = au, y = bv , z = cw, then

∭
E
1 dx dy dz =∭

u2+v2+w2≤1
abc du dv dw

because abc is the absolute value of the Jacobian determinant. So the �nal answer is just 43πabc.

Problem 16. Let’s do dy �rst because it only shows up in two of the bounding planes, while x , z show up in all 4. We have
x + z − 1 ≤ y ≤ 1 − x − z

as the bounds. �e region in the xz-plane is bounded by the lines x = 0, z = 0, and x + z = 1. �is triangular region can be set
up easily either as dx dz or dz dx so I’ll just do the former. Altogether we get

∫
1

0
∫

1−z

0
∫

1−x−z

x+z−1
1 dy dx dz.

Problem 17. Use the chain rule. One approach is to use x = r cos θ, y = r sin θ, giving you the equations
4 = fx(6, 8)(3/5) + fy(6, 8)(4/5)
−2 = fx(6, 8)(−8) + fy(6, 8)(6)

which you can then solve for fx(6, 8) and fy(6, 8).
Alternatively note that we have r =

√
x2 + y2 and θ = arctan(y/x), so applying the chain rule gives

fx(6, 8) = (−2)(−8/100) + (4)(3/5)
fy(6, 8) = (−2)(6/100) + (4)(4/5).

�e �nal answer is fx(6, 8) = 64/25 and fy(6, 8) = 77/25.
Problem 18. Let D denote the region. �e center of mass has coordinates (x̄ , ȳ) where

x̄ = ∬D
xσ(x , y)dx dy

∬D σ(x , y)dx dy
, ȳ = ∬D

yσ(x , y)dx dy
∬D σ(x , y)dx dy

.

By symmetry one can argue that ∬D y∣y∣dx dy is zero. So it just remains to compute x̄. Again using symmetry we have

x̄ =
2∬D+ xy dx dy
2∬D+ y dx dy

where D+ denotes the half of the region above the x-axis.
2
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Problem 19. As suggested, consider the equation x7 − ax6 + bx − 2 = 0. Call the le� hand side F(a, b, x), where x depends
on a, b. �en

∂x
∂a

= −Fa
Fx

∂x
∂b

= −Fb
Fx

.

Now just evaluate Fa(1, 2, 1), Fb(1, 2, 1), Fx(1, 2, 1):
Fa(1, 2, 1) = −(1)6 = −1
Fb(1, 2, 1) = (1) = 1
Fx(1, 2, 1) = 7(1)6 − 6(1)(1)5 + (2) = 3

so by linear approximation we have that when a = 1.03 and b = 2.06, a solution for x is approximately

1 + 1
3
(0.03) − 1

3
(0.06) = 0.99.

Problem 20. �e integrand and the region strongly suggests the change of variables u = y−2x , v = y+3x. �e corresponding
region in the uv-plane is then bounded by the lines

u = 1, u = 4, v = 1, v = 4.
Also we have

du dv = ∣ ∂(u, v)
∂(x , y)∣dx dy = ∣det [−2 1

3 1]∣dx dy = 5 dx dy

which means dx dy = 1
5 du dv. Hence

∬
D

y − 2x
y + 3x dx dy = ∫

4

1
∫

4

1

u
5v

du dv .

(In this problem we were able to avoid having to solve x , y in terms of u, v, but in general you may have to do that.)

Problem 21. It would be annoying to �gure out exactly what this circle is parametrically, but if we let S denote the region
enclosed by the circle in the plane x + 2y + z = 4, we know that the area of S is just π, i.e.

∬
S
1 dS = π.

Since we know this, it would be wise to try and convert the line integral to a surface integral via Stokes’:

∫
C
⟨y, 2x , (2x − y)⟩ ⋅ dr =∬

S
(∇× ⟨y, 2x , (2x − y)⟩) ⋅ dS =∬

S
⟨−1,−2, 1⟩ ⋅ dS.

For this to make sense, we need to orient S correctly. Since C is oriented clockwise when viewed from the origin, the RHR
tells us that we must orient S with a normal vector pointing away from the origin for Stokes’�eorem to hold as we’ve written
it.
Normally to directly compute a surface integral like this, you want to parametrize. But as mentioned before, the region

enclosed by C is a bit annoying to write down bounds for. Since we already know∬S 1 dS = π, let’s just use dS = ndS to rewrite
our ux integral. A unit normal for S is ⟨1, 2, 1⟩/

√
6, and this points away from the origin as we want. To check this, you could

take a point on S, e.g. (0, 2, 0), and then note that ⟨0, 2, 0⟩ ⋅ ⟨1, 2, 1⟩/
√
6 > 0 (why does this imply that n points away from the

origin?). So

∬
S
⟨−1,−2, 1⟩ ⋅ ⟨1, 2, 1⟩√

6
dS = − 4√

6∬S
dS = − 4π√

6
.

Problem 22.
(a) �e Lagrange multipliers system is

u = 1
3
λx−2/3y2/3

v = 2
3
λx1/3y−1/3

x1/3y2/3 = 1.
3
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(Note that x , y must be nonzero because of the constraint equation, so these negative exponents are �ne.) We want to
get rid of λ, so multiply the �rst equation by 2x and the second equation by y to get

2ux = 2
3
λx1/3y2/3 = vy.

�en just solve the system

2ux = vy
x1/3y2/3 = 1

for x , y in terms of u, v.
(b) If you compute the Jacobian determinant a�er solving (a), you’ll �nd that the answer is zero. �is is because (x , y)

is constrained to a curve, namely x1/3y2/3 = 1. So the transformation from the uv-plane to the xy-plane maps to a
lower-dimensional region, and must have zero Jacobian determinant (because it multiplies areas by zero).

Problem 23. Let F(x , y, u) = u − h(x − yu), so that our functional equation is F(x , y, u) = 0. Implicit di�erentiation yields
∂u
∂x

= −Fx
Fu

= − −h′(x − yu)
1 − h′(x − yu)(−y)

∂u
∂y

= −
Fy
Fu

= − −h′(x − yu)(−u)
1 − h′(x − yu)(−y)

and the desired identity easily follows from this. (So it didn’t really matter what h(t) actually was.)
Problem 24. Let D be the portion of S of interest. We can parametrize D using cylindrical coordinates, noting that the sphere
equation gives r =

√
R2 − z2:

r(θ , z) = ⟨
√
R2 − z2 cos θ ,

√
R2 − z2 sin θ , z⟩

where 0 ≤ θ ≤ 2π and a ≤ z ≤ a + h.
So the surface area of D is

∫
2π

0
∫

a+h

a
∣rθ × rz ∣dθ dz.

Problem 25. Parametrize S as r(θ , ϕ) = ⟨ f (θ) sin ϕ cos θ , f (θ) sin ϕ sin θ , f (θ) cos ϕ⟩ so the surface area is

∬
D
∣rθ × rϕ∣dθ dϕ.

�e rest of the problem is computing ∣rθ × rϕ∣, which is very tedious.
If you are wondering if there’s a better way of doing this, there is, but it requires some knowledge of linear algebra.

Problem 26. Let E be the 3D region x2 + y2 + z2 ≤ 1, z ≥ 0. �e boundary ∂E consists of the hemisphere S oriented upwards
(which is the surface we care about) together with the disk z = 0, x2 + y2 ≤ 1 oriented downwards. Call this disk D. So the
Divergence �eorem states

∭
E
(∇ ⋅ ⟨3 + e yz , 2y + sin(xz), arctan(x) − z⟩)dx dy dz =∬

S
⟨3 + e yz , 2y + sin(xz), arctan(x) − z⟩ ⋅ dS

+∬
D
⟨3 + e yz , 2y + sin(xz), arctan(x) − z⟩ ⋅ dS.

We have∇ ⋅ ⟨3+ e yz , 2y + sin(xz), arctan(x)− z⟩ = 1, so the le� side is just the volume of E, and you can compute that by e.g.
using a triple integral

∫
2π

0
∫

1

0
∫
√

1−r2

0
r dz dr dθ = 2

3
π.

D can be parametrized just as r = ⟨x , y, 0⟩. Note that rx ×ry = ⟨0, 0, 1⟩ but we need to take its negative since D is to be oriented
downwards.

∬
D
⟨3 + e yz , 2y + sin(xz), arctan(x) − z⟩ ⋅ dS =∬

x2+y2≤1
⟨⋯,⋯, arctan(x) − 0⟩ ⋅ ⟨0, 0,−1⟩dx dy

=∬
x2+y2≤1

(− arctan(x))dx dy

= ∫
1

−1
∫
√

1−y2

−

√

1−y2
(− arctan(x))dx dy = ∫

1

−1
0dy = 0

because arctan(x) is an odd function.
4
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So in the end,

∬
S
⟨3 + e yz , 2y + sin(xz), arctan(x) − z⟩ ⋅ dS = 2π

3
.

Problem 27. �e given region is really inconvenient to set up in any of the coordinate systems that we are familiar with. We
have two spheres, both of radius 2, one centered at (2, 0, 0) and the other centered at (0, 0, 2).
But geometrically, all we have is two spheres of radius 2, whose centers are 2

√
2 units apart. �e idea is throw away the

original coordinate description of this problem, and set it up so that instead we have one sphere centered at (0, 0, 0), and the
other centered at (0, 0, 2

√
2). In other words, It’s more convenient to deal with the equivalent volume

x2 + y2 + z2 ≤ 4
x2 + y2 + (z − 2

√
2)2 ≤ 4.

Note that these new spheres intersect in a circle contained in the plane z =
√
2. �e region is symmetric across this plane, so

our �nal answer will be 2 times the volume of

x2 + y2 + z2 ≤ 4
z ≥

√
2.

In this form, this is a problem that you should be comfortable doing, e.g. with cylindrical coordinates.
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